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Abstract
As crop productivity is greatly influenced by weather conditions, many attempts have been made to estimate crop yields 
using meteorological data and have achieved great progress with the development of machine learning. However, most yield 
prediction models are developed based on observational data, and the utilization of climate model output in yield predic-
tion has been addressed in very few studies. In this study, we estimate rice yields in South Korea using the meteorological 
variables provided by ERA5 reanalysis data (ERA-O) and its dynamically downscaled data (ERA-DS). After ERA-O and 
ERA-DS are validated against observations (OBS), two different machine learning models, Support Vector Machine (SVM) 
and Long Short-Term Memory (LSTM), are trained with different combinations of eight meteorological variables (mean 
temperature, maximum temperature, minimum temperature, precipitation, diurnal temperature range, solar irradiance, mean 
wind speed, and relative humidity) obtained from OBS, ERA-O, and ERA-DS at weekly and monthly timescales from May 
to September. Regardless of the model type and the source of the input data, training a model with weekly datasets leads 
to better yield estimates compared to monthly datasets. LSTM generally outperforms SVM, especially when the model is 
trained with ERA-DS data at a weekly timescale. The best yield estimates are produced by the LSTM model trained with all 
eight variables at a weekly timescale. Altogether this study shows the significance of high spatial and temporal resolution of 
input meteorological data in yield prediction, which can also serve to substantiate the added value of dynamical downscaling.

Keywords Rice yield prediction · Machine learning model · Dynamical downscaling

Introduction

Weather and climate conditions are the key factors in 
agriculture as they greatly affect the growth and devel-
opment of agricultural products. The yield variability 
of crops is reported to be highly susceptible to heat and 
water stress, particularly during their late vegetative and 

early reproductive phases (Teasdale and Cavigelli 2017). 
Given the great influence of meteorological factors on crop 
yields, numerous attempts have been made to investigate 
how weather and climate variability affects the yields of 
different commercial crops worldwide such as rice, wheat, 
and maize (Alexandrov and Hoogenboom 2000, 2001; 
Auffhammer et al. 2012; Oguntunde et al. 2018; Ray et al. 
2015; Rodríguez-Puebla et al. 2007; Tao et al. 2014). The 
inextricable connection between meteorological variables 
and crop yields underlies the statistical approach for yield 
estimation. With readily available and easily accessible 
weather data, crop yield prediction models are developed 
based on empirically-driven regression equations between 
the yield and meteorological variables. This weather-based 
statistical model has a comparative advantage in terms of 
simplicity and data requirements over a bio-physical model, 
which usually incorporates extensive amounts of input data 
including information about cultivars, irrigation, manage-
ment, and soil conditions in addition to weather data (Lobell 
and Asseng 2017). The abundant variety of datasets enables 
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the bio-physical model to describe dynamical processes of 
crop growth and yield formation, so if all these datasets are 
readily provided, bio-physical crop modeling could be very 
useful in predicting yields with wide applicability from a 
local or regional level to a national level (Morell et al. 2016; 
van Wart et al. 2013). However, not all parts of the world 
possess all these datasets required by bio-physical models, 
and uncertainty in many parameters makes the calibration 
and evaluation of data difficult (Lobell and Burke 2010). 
Weather-based statistical models, on the other hand, require 
meteorological data only as input data, so they gain advan-
tages over bio-physical models in terms of accessibility 
and scalability (Joshi et al. 2021; Mathieu and Aires 2016). 
Moreover, they can be easily employed to predict future crop 
yields (Lobell and Burke 2010).

A variety of machine learning and deep learning algo-
rithms have been actively utilized for developing yield pre-
diction models for various crops. As one of the simplest 
forms of machine learning algorithms, multiple linear 
regression has been widely used to predict yields of numer-
ous crops including potato, maize, soybean, hulless bar-
ley, arabica coffee, and rice in different parts of the world 
(Abrougui et al. 2019; Das et al. 2018; Joshi et al. 2021; 
Kittichotsatsawat et al. 2022; Matsumura et al. 2015; Zae-
fizadeh et al. 2011). As the temporal and spatial resolution 
of meteorological information has improved, recent studies 
tend to adopt more advanced machine learning techniques 
such as an artificial neural network (Crane-Droesch 2018; Ji 
et al. 2007; Kaul et al. 2005), support vector machine (SVM; 
Gandhi et al. 2016; Jaikla et al. 2008; Joshi et al. 2021; Su 
et al. 2017), generalized additive model (Chen et al. 2019; 
Joshi et al. 2021; Onwuchekwa-Henry et al. 2022), and long 
short-term memory (LSTM; Sun et al. 2019; Tian et al. 
2021). The wide variety of algorithms allows performance 
comparison between them, providing valuable information 
about which machine learning technique is more suitable for 
the development of crop yield prediction. For example, Joshi 
et al. (2021) show the superiority of SVM in corn and maize 
estimation in the US central Corn Belt, whereas Cao et al. 
(2021) demonstrate that LSTM shows a better performance 
in predicting rice yield in China compared to random forest.

In this study, we adopt SVM and LSTM algorithms to 
predict rice yields in Korea based on fine-scale meteoro-
logical information. Rice is the most important staple food 
in South Korea, providing more than 60% of the starch-
based calories to the population and accounting for more 
than half of the total farmland usage (Jeong et al. 2021). 
In accordance with the high demand and supply of rice in 
the nation, the estimation of rice yields has been actively 
studied in Korea using various methods (Hong et al. 2012; 
Jeong et al. 2018; Na et al. 2012, 2013; Yun 2003). South 
Korea is reported to be one of the nations where the rice 
yield is highly dependent on weather conditions. Annually 

up to half of the rice yield variations in Korea are explained 
by weather variability, especially that of temperature (Ray 
et al. 2015). Other weather factors like duration of sunshine, 
diurnal temperature range (DTR), and precipitation have 
also substantial influences on rice productivity, together and 
separately (Chen et al. 2016; Prabhjyot-Kaur et al. 2021). 
Especially, DTR is demonstrated to play a significant role in 
the growth and development of crops (Hu and Buyanovsky 
2003; Lobell 2007; Tack et al. 2015; Verón et al. 2015). 
Besides, although more than 80% of paddy fields in Korea 
are irrigated (MAFRA and KRC 2022), precipitation is 
still important for rice production in Korea because spring 
drought due to low precipitation may lower the water level 
in the reservoir and thus delay rice planting, or fields may 
be flooded by prolonged rain season or heavy rain in sum-
mer. In this regard, this study investigates the effect of input 
meteorological variables on rice yield prediction by compar-
ing the yield estimates obtained from different combinations 
of input data.

The input meteorological datasets for statistical crop yield 
prediction models have been mostly sourced from in-situ 
observational or satellite data. However, observational data 
are limited in terms of spatial coverage and sometimes omit-
ted depending on the condition of weather instruments, for 
example, in case of a temporary failure, damage, or disrup-
tion. In contrast, climate models enhance the consistency 
and coverage of agrometeorological information by seam-
lessly providing weather information even for areas with 
limited or no observation stations, and more importantly, 
enable future yield prediction by providing long-lead-time 
forecasts. A few studies have employed global reanalysis 
data in crop yield or phenology phase prediction (Cho et al. 
2021; Oses et al. 2020), but due to the coarse resolution 
of a Global Climate Model (GCM), the direct application 
of GCM data into a small domain like South Korea is not 
highly desirable. Therefore, we conduct dynamical downs-
caling using a Regional Climate Model (RCM) and use the 
downscaled data to build yield prediction models in order 
to investigate if the climate model data can replace obser-
vations and if the benefit of higher-resolution simulations 
is recognized not only in the representation of climatology 
but also in rice yield estimation. In addition to the spatial 
resolution, we also evaluate if increasing the temporal reso-
lution of the climate data helps improve yield estimates by 
dividing the datasets into two different timescales, weekly 
and monthly. The overall goal of this study is to develop 
rice yield prediction models for South Korea based on SVM 
and LSTM algorithms fed by observational data as well as 
climate model output data. A comparison of yield predic-
tion derived from various combinations of meteorological 
input data with different temporal and spatial resolutions 
will provide valuable insight into the dependence of rice 
yield on meteorological variables, demonstrating the added 



International Journal of Biometeorology 

1 3

value of dynamical downscaling from an application-wise 
perspective.

Data and methods

Study area and yield data

For model training and testing, this study utilizes rice 
yields during the last 40 years (1982–2021) in South Korea, 
which are obtained from the KOrean Statistical Informa-
tion Service (KOSIS, https:// kosis. kr/). Out of a total of 17 
provincial-level administrative divisions, we use the yield 
data of 11 divisions after excluding those whose share in the 
national total yield has remained less than 2% for the past 
ten years or whose yield data is not available for the whole 
40-year study period. The list of the divisions included in the 
analysis and those excluded from the analysis is available in 
Table S1 in Electronic Supplementary Material (ESM). The 
annual rice yields are linearly detrended for each administra-
tive division in order to remove non-climate effects such as 
advances in agricultural technology. In our study, the linear 
trend in the 40-year annual rice yields is removed using the 
“signal.detrend” function (type = “linear”) from SciPy.

Meteorological data

In this study, we utilize meteorological data from 
three different sources: observations, reanalysis, and 

dynamically downscaled reanalysis. Firstly, daily obser-
vational data are obtained from 56 in-situ stations across 
the nation during the 40-year study period of 1982–2021. 
The locations of the stations are plotted in Fig. 1(a). The 
obtained weather data include daily mean temperature 
(Tmean), maximum temperature (Tmax), minimum tem-
perature (Tmin), precipitation, relative humidity (RH), 
solar irradiance (SI), and mean wind speed (WSmean). 
One additional variable, DTR, is calculated as the dif-
ference between Tmax and Tmin. Next, the data of these 
variables are obtained from ECMWF ERA5 Reanalysis 
hourly data at the 0.25° × 0.25° resolution (Hersbach et al. 
2020). Finally, to generate higher-resolution meteorologi-
cal data, we conduct dynamical downscaling of ERA5 
over South Korea using Weather Research and Forecast-
ing. The topography of the domain is shown in Fig. 1(b). 
With the 5-km resolution, the complicated topographi-
cal features of the Korean Peninsula are well described, 
such as a long, narrow mountain range along the eastern 
coast with steep elevation gradients, low-lying basins, and 
complicated coastlines. The physical parameterizations of 
the modeling system follow the optimal setting that Qiu 
et al. (2020) found through various sensitivity experi-
ments. The initial and boundary conditions, ERA5, are 
obtained at the resolution of 0.25° × 0.25° at 6-h intervals. 
The observations, the original ERA5 data, and the 5-km 
downscaled ERA5 data are referred to as OBS, ERA-O, 
and ERA-DS, respectively. As OBS is obtained from 56 
in-situ observational stations, meteorological data of 56 

Fig. 1  (a) Locations of 56 in-situ observational stations and (b) WRF model domain for dynamical downscaling

https://kosis.kr/
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grid points, each of which is located nearest to the cor-
responding in-situ station, are extracted from ERA-O and 
ERA-DS.

The meteorological data from OBS, ERA-O, and 
ERA-DS are prepared as input datasets at two different 
timescales, weekly and monthly, in order to evaluate the 
impact of the temporal resolution of the input data on 
model performance. In Korea, transplanting is conducted 
in May, and harvesting starts in late September in the 
northern region and finishes by late October in the south-
ern region (Rural Development Administration, personal 
communication). The data are therefore obtained to cover 
from May to September each year, the period where rice 
productivity is largely affected by atmospheric condi-
tions. The weekly (monthly) dataset consists of weekly 
(monthly) averages of Tmean, Tmax, Tmin, DTR, RH, 
and WSmean, and weekly (monthly) accumulated pre-
cipitation and SI. Since the yield data is available at a 
division level, the weekly and monthly weather input 
datasets are prepared for each administrative division 
based on the Thiessen polygon method so that the mete-
orological data and the yield data are properly matched 
for each division. The input data are normalized before 
being utilized to train and test the models. Each variable 
is measured in a different unit and varies significantly in 
magnitude, but data normalization rescales all the data 
features to the same standard range and therefore elimi-
nates data inconsistencies arising from different units, 
magnitudes, and ranges of input variables. In our study, 
the z-score normalization method is adopted, which is 
relatively robust against outliers and minimizes their 
influence on the data.

Meanwhile, DTR itself may be misleading when used 
alone, because DTR is simply the difference between 
Tmax and Tmin within one day, so days with totally dif-
ferent Tmax and Tmin can have the same DTR value. 
This issue can be addressed by pairing DTR with Tmean, 
which is in the range between Tmax and Tmin. To com-
pare the impacts of input variables, four datasets are 
composed of different combinations of meteorological 
variables. Dataset 1 is composed of Tmean and precipi-
tation, the two most common variables used in yield pre-
diction. Dataset 2 consists of Tmean, precipitation, and 
DTR, which is designed with the purpose of evaluating 
the impact of the inclusion of DTR on the performance of 
the model compared to the one developed with Tmean and 
precipitation only. RH, SI, and WSmean are then added 
to form a richer dataset (Dataset 3), advanced from the 
traditional dataset of temperature and rainfall. Lastly, the 
full dataset with all eight variables (Dataset 4) is prepared 
to examine if Tmax and Tmin play further roles in yield 
forecasting, aside from their previous role as the compo-
nents of DTR.

Model development

In this study, rice yield prediction models are developed 
using two well-known machine learning algorithms, SVM 
and LSTM, in order to estimate the annual yields of the most 
recent decade (2012–2021) for each administrative division. 
The Bayesian optimization algorithm is applied to optimize 
the hyperparameters of the SVM and LSTM models. (The 
selection result of the parameters for each model is available 
in Table S2 in ESM.) Also, both models adopt the Leave-
One-Out Cross-Validation (LOOCV) method. The LOOCV 
approach is often used to assess the reliability and robust-
ness of a crop yield prediction model (Kogan et al. 2013; 
Kouadio et al. 2014, 2021; Liu et al. 2020; Mkhabela et al. 
2011). For the SVM model, the yields of 39 years (e.g., 
1982–2014, 2016–2021) are used to train the model, and 
the predicted yield for the remaining one year (e.g., 2015) is 
used to test the performance of the developed model through 
comparison to the actual yield of that year (See Figure S1). 
In the case of the LSTM model, since it is a time-series 
model, yield data beyond a target year cannot be included 
in a training dataset. As a result, the training dataset used 
in the LSTM model development contains yield data from 
1982 to the year right before the target year. For example, the 
yield data from 1982 to 2011 are used to estimate the yield 
in 2012, the data from 1982 to 2012 to estimate the yield in 
2013, and so on. For both SVM and LSTM, the process is 
repeated 10 times, from 2012 to 2021, resulting in 10-year 
predicted yields for each administrative division. The LSTM 
model takes into consideration not only sequential but also 
geographical features of data in each division (Clauss et al. 
2018; Garg et al. 2013; Oyoshi et al. 2016), which differen-
tiates itself from the SVM model. The conceptual diagram 
of the LOOCV method applied for SVM and LSTM is pre-
sented in Figure S1 in ESM.

Results

Relationship between rice yields and meteorological 
variables

The relative importance of each meteorological variable to 
the rice yield variation can be estimated by the correlation 
coefficient (r) between the variable and the yield. Figure 2 
depicts the temporal evolution patterns of the correlation 
between each meteorological variable (obtained from OBS) 
and the yield from May to September (MJJAS) at weekly 
and monthly timescales, respectively. It is evident that 
weather conditions in July and August are most correlated 
with rice yields, whether positively or negatively, as depicted 
by the vivid orange or blue colors for many variables during 
those two months (Fig. 2(a)). From a weekly perspective 
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(Fig. 2(b)), stronger correlations between the meteorologi-
cal conditions and the yields are observed from Week 11 
to Week 15 (mid-July to mid-August), namely during the 
reproductive stage. At both temporal levels, DTR plays the 
most significant role in the variation of rice yields, showing 
the maximum r value among the eight variables. It consist-
ently exhibits a positive correlation with the yield during 
MJJAS at a monthly level, and a particularly strong positive 
correlation is observed in August with the peak in week 14 
(July  31st–August  6th). The prominent pattern of DTR is in 
accordance with Chen et al. (2016), which states that DTR 
contributes to rice yield variability more than precipitation, 
RH, and Tmean. The next significant variables are RH and 
precipitation. With a small difference in their maximum r 
values, these two variables have very similar temporal pat-
terns in their correlation with rice productivity, which may 
be explained by the close link between rainfall and RH. They 
are negatively correlated with the yield throughout MJJAS at 
a monthly timescale with the largest degree in August, which 
is the same pattern as DTR but in the opposite direction. 
At a weekly level, the negative correlations are consistently 
observed from week 11 to week 20, from mid-July to mid-
September, which corresponds to the rainy season. The next 
significant variables are Tmax and SI. The positive response 

of the yield to Tmax gets intense during July at the monthly 
level, or from week 11 to week 15 at the weekly level which 
corresponds to the period from mid-July to mid-August, 
when extremely hot weather events are frequent. SI also gen-
erally affects the rice yield positively, especially in July and 
August which are characterized by high radiation as the pin-
nacle of summer. The benefit of increased solar radiation on 
rice production is reported by Zhang et al. (2010). Temporal 
changes of Tmean and Tmin have a relatively small impact 
on the variations of rice yield. They show a positive correla-
tion with the yields across the board, particularly strongly in 
July. It is notable that Tmean, which is the weather data most 
commonly used to develop a rice yield prediction model, is 
indeed not very influential in the yield variation. This is in 
agreement with the relative significance of meteorological 
variables to rice productivity in order of DTR, precipitation, 
RH, and Tmean, as stated in Chen et al. (2016). Also, it is 
worthy of notice that Tmin itself does not form a strong cor-
relation with the yield, but its difference from Tmax has a 
great influence on the yield dynamics. WSmean is revealed 
to be most weakly correlated with yield variances. Temporal 
changes of WSmean barely elicit a weak negative response 
from the rice yield with the maximum r value of 0.2 at the 
weekly level and 0.1 at the monthly level. Though the degree 

(a) Max r (abs)

(b) Max r (abs)

Fig. 2  Temporal evolution patterns of the correlation coefficient 
(r) between meteorological parameters and the rice yield at the (a) 
monthly  and (b) weekly  levels. Positive correlations are colored in 

red and negative correlations in blue. The variables are ranked by 
their maximum correlation coefficient (max r), which is plotted in 
bars on the right
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is small, the negative correlation between WSmean and the 
yield is consistently shown from June to September. The 
negative impacts of wind speed on crop plants have been 
addressed in many previous studies. Firstly, strong winds 
may abrade plants, mainly by allowing their leaves or bodies 
to rub against each other, which can consequently damage 
their cuticle and accelerate water loss (Gardiner et al. 2016; 
Van Gardingen and Grace 1991). Also, as a herbaceous 
plant, rice is particularly vulnerable to stem or root lodg-
ing caused by mighty winds (Kashiwagi and Ishimaru 2004; 
Rajkumara 2008).

Validation of meteorological input data

With regards to the aforementioned variables, we evaluate 
the capability of ERA-O and ERA-DS for reproducing the 
historical climatology in comparison with OBS so as to 
assess whether they are adequate as input data to replace 
OBS for prediction models. The spatial distributions of the 
40-year average MJJAS Tmax, Tmean, and Tmin of OBS, 
ERA-DS, and ERA-O are displayed in Fig. 3. Due to the lim-
ited number of in-situ observation stations and their uneven 
distribution over the country, the interpolated OBS spatial 

Fig. 3  a–i Spatial distributions of 40-year (1982–2021) MJJAS aver-
age Tmax (left column), Tmean (middle column), and Tmin (right 
column) from OBS (top row), ERA-O (middle row), and ERA-DS 
(bottom row). For fair comparisons between OBS (obtained from 56 

in-situ stations), ERA-O, and ERA-DS, OBS and ERA-O are interpo-
lated into the 5 km grid of the ERA-DS domain. The value at the top 
right of the individual figures indicates the spatial average over South 
Korea
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maps may not be the perfect description of the temperature 
climatology of South Korea, but the general topographical 
impact on temperature is well described. The temperature is 
relatively low in the high-altitude mountainous areas along 
the northeast coast with the coldest temperature at the peak. 
Meanwhile, the western and southern areas have relatively 
high temperatures, and the highest temperature is observed 
in the southeastern basin. ERA-O is able to simulate the 
observed temperature pattern of low temperature at high alti-
tudes and high temperature at low altitudes, but due to its 
coarse resolution, the temperature gradient is rather gradual 
over the mountains, and region-specific temperature patterns 
are not fully reproduced. Due to the underestimation of ele-
vation in the GCM, ERA-O retains a positive bias for Tmin, 
whereas a substantial amount of negative bias is exhibited 
for Tmax. Benefitting from the higher spatial resolution, 
ERA-DS is able to more realistically describe the region-
distinct temperature features, such as the low temperature 
over the mountainous areas and the high temperature in 
the southeastern basin. The ERA-DS temperature distribu-
tions may seem different from those of OBS, but it is partly 
attributed to the limited number and the uneven distribu-
tion of observational stations. The resolution of ERA-DS is 
even high enough to simulate the sharp temperature gradi-
ent along the northeastern coastlines induced by the steep 
elevational gradient between high-latitude mountains and 
low-latitude coasts over a relatively short distance, which 
is not even clearly illustrated by OBS due to the scarcity of 
observations over this area.

Another analysis of temperature is conducted to prove that 
the benefit of dynamical downscaling stands out in reproduc-
ing extremes. The 40-year average of annual MJJAS top 5% 
Tmax and lowest 5% Tmin (8 hottest and coldest days during 
MJJAS in each year, respectively) values of the 56 stations 
simulated by ERA-O and ERA-DS are compared with OBS 
(see Figure S2 in ESM). The underestimation of ERA-O 
for Tmax is clearly seen with almost all ERA-O-simulated 
Tmax values located below the 1-to-1 line and almost half 
of them even located below the 2 °C negative bias boundary. 
Meanwhile, most of the ERA-DS-simulated Tmax values 
are much closer to the observed values, with biases less than 
2 °C, showing that dynamical downscaling greatly improves 
the predominant underestimating tendency of ERA-O. In the 
case of Tmin, the added value of dynamical downscaling is 
not as distinct as Tmax, yet ERA-DS-simulated Tmin values 
are generally closer to the observed values. The superiority 
of ERA-DS in reproducing temperature extremes, especially 
Tmax, gives great benefits to reproducing DTR, which is 
most highly correlated with yield variation.

Figure 4 depicts the interannual variations of MJJAS 
average precipitation, RH, SI, and WSmean anomalies cal-
culated from OBS, ERA-O, and ERA-DS during the 40-year 
study period. Both ERA-O and ERA-DS well reproduce the 

yearly variability of precipitation, successfully capturing 
the wet years (e.g., 1998, 2003, 2020) and dry years (e.g., 
1994, 2015). The biases are small in most years, but some 
relatively large gaps between OBS and ERA-O, or between 
OBS and ERA-DS are randomly observed in a few years, 
like the overestimation of ERA-DS in 1998 and 2001, and 
underestimation of ERA-O in 2010 and 2011. In terms of 
the simulation of the yearly RH variations, ERA-DS out-
performs ERA-O. Although both entail biases in a number 
of years, the biases of ERA-DS are usually smaller in mag-
nitude and less frequently observed compared to ERA-O 
(e.g., 1983–1987, 2001, 2011–2012, 2019). This may be 
attributed to the better temperature simulation achieved by 
dynamical downscaling as temperature, along with precipi-
tation, is one of the factors that are closely connected with 
humidity. Regarding SI, although the two model simulations 
sometimes cannot grasp sharp increases or decreases (e.g., 
1994–1995, and 2015–2017) in radiation, they still success-
fully simulate the years with greater radiation (e.g., 1994, 
2004) and the years with less radiation (e.g., 1998, 2003) 
compared to their respective previous year, proving that they 
do possess a fair level of ability to simulate the radiation 
climatology of Korea. Similarly, in the year-to-year vari-
ations of the simulated WSmean, despite some occasional 
large biases, the sign of the yearly WSmean variability is 
well captured by the climate models in most years. For pre-
cipitation, SI, and WSmean, the benefit of dynamical down-
scaling is not clearly demonstrated. Since the interannual 
variations of an RCM-downscaled simulation come from its 
initial and boundary conditions (GCM data), there is a limit 
to the degree of improvement that can be achieved through 
dynamical downscaling.

Yield prediction using machine learning techniques

Our analysis of the performance of the prediction models 
begins with examining the results of the models developed 
with OBS datasets, which serve as reference results. The 
comparisons of the predicted and actual yields are presented 
in the form of scatterplots in Fig. 5. At a glance, it is obvious 
that models developed with weekly datasets (Fig. 5(e–h)) 
give better yield estimates than those with monthly data-
sets (Fig. 5(a–d)). Regardless of the model type and dataset, 
the yield dots in Fig. 5(a–d) are far more widely scattered 
than those in Fig. 5(e–h), indicating that many yield val-
ues predicted by the monthly models differ a lot from the 
actual yield values. From the viewpoint of the resemblance 
between the linear regression line and the 1-to-1 line, the 
LSTM models perform better than the SVM models with 
Dataset 1 and 2, but there is little difference between the two 
with Dataset 3 and 4 at a monthly timescale. When weekly 
meteorological data are used for model development, on the 
other hand, the LSTM models always outperform the SVM 
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models, irrespective of the dataset. When the dispersion 
of the yield points and their regression line are considered 
together, it is clearly seen that weekly models are superior 
to monthly models, and the LSTM models tend to perform 
better than the SVM models.

To quantitatively evaluate the performance of the yield 
prediction models, correlation coefficient (CORR), root 
mean square error (RMSE), Index of Agreement (IoA), 
and Nash–Sutcliffe efficiency coefficient (NSE) values of 
all 16 OBS models are presented in Table S3 in ESM. In 

addition, the difference between the weekly and monthly 
models and the difference between the SVM and LSTM 
models for each dataset are also calculated and presented 
in Table S3 in order to assess the impact of the temporal 
level and the model type on the performance of the model. 
The CORR, RMSE, IoA, and NSE comparison between 
the monthly and weekly models proves the benefit of using 
higher temporal-level weather data for yield prediction. 
The best RMSE, IoA, and NSE are 31.268 kg/1000m2, 
0.613, and 0.469 for the monthly SVM model group, 

Fig. 4  Interannual variations of MJJAS average (a) Precipitation, (b) RH, (c) SI, and (d) WSmean anomalies from 1982 to 2021 (averaged over 
the 56 stations). OBS, ERA-O, and ERA-DS results are displayed with blue, orange, and green lines, respectively
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which are poorer than the worst weekly SVM model with 
RMSE, IoA, and NSE of 28.967 kg/1000m2, 0.662, and 
0.544, respectively. The highest NSE value of 0.469 from 
the monthly SVM model group is still considered “unsat-
isfactory”, but NSE values of all four weekly SVM models 
all fall into the “satisfactory” group according to Moriasi 
et al. (2007). The situation is similar for LSTM models; 
when Dataset 1 is fed to the LSTM model at a monthly 
scale, the resulting NSE value is even below zero, which 
means that the model is unacceptable (Zeybek 2018). 
Using the same dataset at a weekly level greatly improves 
the NSE value, from − 0.011 to 0.574, upgrading the 
model from an unacceptable level to a satisfactory level. 
Not only NSE, but RMSE is also noticeably reduced when 
a model is trained with the weekly weather data. Replacing 
the monthly datasets with the weekly datasets can decrease 
RMSE by as much as 35% for the LSTM models and by 
as much as 26% for the SVM models. In addition to the 
importance of high temporal-resolution meteorological 
input data, the superiority of LSTM over SVM in yield 
prediction is also numerically demonstrated. Only when 
the training dataset consists of monthly Tmean and pre-
cipitation, SVM provides slightly better yield estimates 
in terms of RMSE, IoA, and NSE, and LSTM outdoes 
SVM in all other cases. The general superiority of LSTM 
can be attributed to its ability to capture the temporal 

dependencies in the data and also the complex relation-
ships between meteorological variables and rice yields 
over a long time.

The comparison of the results of the four different 
datasets shows that the yield prediction ability of a model 
largely depends on the combination and diversity of weather 
variables. It is indisputable that using monthly Tmean and 
precipitation (Dataset 1) is insufficient for building good 
yield prediction models since both SVM and LSTM mod-
els trained with Dataset 1 at a monthly level are absolutely 
unqualified in all four quantitative aspects. Adding DTR to 
Tmean and precipitation (Dataset 2) improves the prediction 
ability of the models, but the results still fall short of accept-
able standards. When trained with Dataset 3, the LSTM 
model shows an acceptable level of performance with CORR 
of 0.787, RMSE of 28.18 kg/1000m2, which is equivalent 
to 4.1% of the actual 10-year average yield, IoA of 0.658, 
and NSE of 0.568 which is regarded “satisfactory” accord-
ing to Moriasi et al. (2007), even at a monthly timescale. 
However, if weekly meteorological data are utilized, using 
Dataset 1 already achieves comparable performance, which 
shows a clear advantage of high temporal resolution of the 
input weather data. Same as at the monthly level, training 
the models with the increased variety of meteorological vari-
ables at the weekly timescale helps enhance the prediction 
ability of the models, as shown by the comparison between 

Fig. 5  Scatterplots of the actual versus predicted yields from 
SVM (red dots) and LSTM (blue triangles) developed with (a–c) 
monthly and (d–f) weekly OBS datasets. The black diagonal line rep-

resents the 1-to-1 line, and the red and blue dashed lines represent the 
linear regression between the actual and predicted yields from SVM 
and LSTM, respectively
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the results of Datasets 1, 2, and 3. When trained with the 
complete variable set (Dataset 4), both the SVM and LSTM 
models generally perform at their best, except for the SVM 
model at a weekly timescale. Indeed, the SVM model with 
weekly Dataset 3 slightly outperforms that with weekly 
Dataset 4. It shows that a dataset with increased diversity of 
variables does not always lead to better predictions but may 
give a different result depending on which model algorithm 
it is fed to. Nonetheless, the LSTM model trained with Data-
set 4 shows exceptionally outstanding performance with the 
highest CORR (0.878), lowest RMSE (21.313 kg/1000m2, 
3.1% of the actual yield), highest IoA (0.764), and highest 
NSE (0.753) among all models developed with OBS data-
sets. It is the one and only OBS model which is regarded as 
“very good” according to the NSE rating criteria of Moriasi 
et al. (2007), consolidating its position as the best-perform-
ing OBS model. At least for the LSTM algorithm, including 
respective Tmax and Tmin helps improve the forecasting 
capability of the model, proving their significance as indi-
vidual variables in input datasets, which should be consid-
ered separately from the impact of their difference (DTR).

The analysis of the results of the OBS models underlies 
the importance of high temporal-level input data, the supe-
riority of LSTM over SVM, and the positive impact of addi-
tional climatic information besides temperature and precipi-
tation. In order to verify the adequacy of climate model data 
to replace OBS for rice yield model development and assess 
the impact of increasing the spatial resolution of the model 
data on yield prediction, the yield estimates from the models 
developed with ERA-O and ERA-DS data are quantitatively 
analyzed too. The CORR, RMSE, IoA, and NSE values of 
ERA-O and ERA-DS models trained with the four weekly 
datasets are presented in Table 1. The features shown in the 
OBS models are almost identically observed in the models 
trained with climate model data. The benefit of the utiliza-
tion of weekly meteorological datasets is demonstrated with 
the higher CORR, IoA, and NSE, and lower RMSE values. 
There is one exception when the ERA-O Dataset 1 leads to a 
slightly higher CORR value of the SVM model at a monthly 
timescale, but the difference is insignificant (0.007), so it 
may safely be said the high temporal-resolution input cli-
mate data contribute to the development of good yield pre-
diction models. The superiority of LSTM over SVM is also 
irrefutably demonstrated from a quantitative perspective, 
and the best yield estimates are obtained when Dataset 4 is 
utilized. For SVM, in fact, using the ERA-O dataset leads to 
better yield estimates than using the ERA-DS dataset. How-
ever, the best-performing SVM model still falls behind the 
LSTM models, whether the training dataset is obtained from 
ERA-O or ERA-DS. Contrary to SVM, LSTM gains a clear 
advantage from using ERA-DS data, and the benefit of using 
ERA-DS data instead of ERA-O for the LSTM development 
is greater than the benefit of using ERA-O data instead of 

ERA-DS in the SVM model development. In conclusion, 
the LSTM model developed with ERA-DS weekly Dataset 
4 is evaluated as the best; the CORR is almost close to 0.9, 
the RMSE of 20.054 kg/1000m2 is less than 3% of the actual 
yield, the IoA value of 0.816, and the NSE value of 0.781 
means that the model is “very good” according to the stand-
ard of Moriasi et al. (2007). The outstanding performance 
of this model is also graphically well-noticed. The scatter-
plots of the actual and predicted yields from the ERA-O 
and ERA-DS models with weekly Dataset 4 are presented 
in Figure S3 in ESM. The numerical evaluation of the SVM 
weekly best models tells that ERA-O outperforms ERA-DS, 
but in the scatterplot, the difference between ERA-O and 
ERA-DS is not very apparent. On the other hand, when the 
ERA-DS weekly Dataset 4 is the training dataset, the LSTM 
model shows a great performance which is demonstrated by 
the distribution of its estimates along the black 1-to-1 line. 
The added value of dynamically downscaled climate data is 
clearly acknowledged in statistical yield prediction based on 
the LSTM algorithm.

Summary and conclusion

As climate change is expected to bring huge changes in 
meteorological conditions and unprecedented weather events 
in the future, the importance of crop yield prediction has 
come to the fore worldwide. A weather-based statistical 
model is a useful tool for yield prediction, which requires 
only weather information as input data without the need for 
other information about soil conditions, genotypes, or man-
agement. However, deterministic forecasts are only available 
in the short term, which cannot meet the requirements of 
statistical models. This problem may be solved by employ-
ing seasonal forecasts obtained from GCMs, subject to the 
accuracy of the prediction, but another limitation arises from 
the coarse resolution of the GCMs. Especially, the compli-
cated geographical features of South Korea are not fully 
reflected in the usual resolution of global forecasts, which 
leads to the poor quality of the region-specific climatology 
simulations in the Korean Peninsula. Dynamical downscal-
ing using RCMs can be used to overcome this limitation 
of GCM simulations by generating high-resolution simula-
tions with a more realistic description of the topography. 
This study aims to evaluate the applicability of the dynami-
cally downscaled climate model data in the development of 
weather-based statistical rice yield estimation models for 
South Korea, prior to the employment of seasonal forecasts.

As the only input, weather data are the key components 
of the model, so the RCM simulations are first validated 
by comparison with the observations. The spatial patterns 
of the 40-year MJJAS average Tmax, Tmean, and Tmin 
clearly show the added value of dynamical downscaling. 
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The low resolution of the original ERA5 is not able to 
simulate the localized temperature climatology, espe-
cially in high-latitude areas. The cold bias and the warm 
bias are observed in the Tmax and Tmin simulations, 
respectively, which indicates that GCMs cannot properly 
simulate extreme temperature events. On the contrary, the 
high resolution of RCMs is well able to capture the spatial 
details of temperature patterns as well demonstrated in 
a number of previous studies (Im et al. 2021; Qiu et al. 
2020). Especially, the downscaled ERA5 exhibits a clear 
advantage over the original ERA5 in simulating Tmax 
and Tmin. The comparison of the 40-year MJJAS average 
Tmax values of 56 in-situ stations between ERA-O and 
ERA-DS shows that dynamical downscaling is not only 
greatly effective in reducing the prevalent cold bias for 
Tmax in ERA-O simulations but also able to decrease the 
warm bias for Tmax and Tmin observed in one specific 
station. Not only temperature, but RH is also far more real-
istically simulated in the downscaled data, well following 
the region-specific characteristics such as high humidity 
in mountains and low humidity in basins. However, the 
benefit of dynamical downscaling is not observed in all 
meteorological variables. In the interannual variations 
of MJJAS average precipitation, SI, and WSmean during 
the 40 years, ERA-DS does not outperform ERA-O. Yet, 
dynamical downscaling has great meaning in that it gains 
ground on simulating temperature, especially DTR which 
is the most highly correlated with the rice yield variations 
in Korea.

Beyond the simulation of Korean climatology, the added 
value of dynamical downscaling is achieved in the prediction 
of rice yields in South Korea. Two machine learning algo-
rithms, SVM and LSTM, are utilized to develop rice yield 
prediction models using OBS, ERA-O, and ERA-DS. The 
good performance of the OBS models proves the effective-
ness of statistical yield prediction models and serves as the 
reference performance. The comparison with the ERA-O 
and ERA-DS models shows that the yield prediction abil-
ity of the model is increased with the temporal and spa-
tial resolution of input climatological datasets. The use of 
weekly ERA-DS datasets in the prediction models consist-
ently provides the best yield estimates in terms of all CORR, 
RMSE, IoA, and NSE, which highlights the added value 
of dynamical downscaling in yield prediction. Particularly, 
when the LSTM model is trained with weekly Tmean, Tmax, 
Tmin, precipitation, DTR, RH, SI, and WSmean simulated 
by ERA-DS, it leads to the best estimates. In this view, in the 
absence of long-term forecasts that are detailed enough for 
yield prediction in the present time, dynamical downscaling 
of the global seasonal forecasts (e.g., CFSv2) is expected 
to provide valuable meteorological input data. Therefore, 
future work will be focusing on utilizing the downscaled 
seasonal forecast data for yield prediction. In this regard, 

the need for accurate prediction of future crop yields will 
keep rising to give useful aid to the decision-making of poli-
cymakers and farmers (Peng et al. 2018). The comparison 
and evaluation of prediction models developed in this study 
based on dynamically downscaled weather data comprised 
of different weather parameter sets and timescales could 
ensure the ability of the model before the actual application 
of the model to predict future rice yields using downscaled 
forecasts.
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