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Abstract

In this study, we investigate the impact of the spatial variability of daily precipitation

on hydrological projections based on a comparative assessment of streamflow simu-

lations driven by a global climate model (GCM) and two regional climate models

(RCMs). A total of 12 different climate input datasets, that is, the raw and bias‐

corrected GCM and raw and bias‐corrected two RCMs for the reference and future

periods, are fed to a semidistributed hydrological model to assess whether the bias

correction using quantile mapping and dynamical downscaling using RCMs can

improve streamflow simulation in the Han River basin, Korea. A statistical analysis

of the daily precipitation demonstrates that the precipitation simulated by the GCM

fails to capture the large variability of the observed daily precipitation, in which the

spatial autocorrelation decreases sharply within a relatively short distance. However,

the spatial variability of precipitation simulated by the two RCMs shows better agree-

ment with the observations. After applying bias correction to the raw GCM and raw

RCMs outputs, only a slight change is observed in the spatial variability, whereas an

improvement is observed in the precipitation intensity. Intensified precipitation but

with the same spatial variability of the raw output from the bias‐corrected GCM does

not improve the heterogeneous runoff distributions, which in turn regulate unrealis-

tically high peak downstream streamflow. GCM‐simulated precipitation with a large

bias correction that is necessary to compensate for the poor performance in present

climate simulation appears to distort streamflow patterns in the future projection,

which leads to misleading projections of climate change impacts on hydrological

extremes.
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1 | INTRODUCTION

The factors affecting a streamflow hydrograph can be divided into

watershed structures (e.g., size, shape, slope, and roughness), precipi-

tation characteristics (e.g., amount, intensity, and duration of precipita-

tion), and antecedent conditions (e.g., soil moisture; Singh, 1987).
wileyonlinelibrary.com/j
Although watershed structures are prescribed at a time initially for

running a hydrological model, precipitation data should be regularly

updated because precipitation initiates the hydrological processes

and affects the antecedent conditions of soil moisture. Therefore, pre-

cipitation characteristics that vary considerably over space and time

can be the determining factors that shape the behaviour of streamflow
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simulations in hydrological modelling. In particular, the spatial variabil-

ity of precipitation has a dominant influence on the rainfall–runoff

response (Cristiano, ten Veldhuis, & van de Giesen, 2017; Merz &

Bardossy, 1998). Many studies have demonstrated that the accuracy

of the shape and peak timing of a streamflow simulation depends

largely on the spatial variability of the precipitation data used as input

to run hydrological models (Beven & Hornberger, 1982; Henn et al.,

2018; Kokkonen, Koivusalo, Karvonen, & Croke, 2004; Smith et al.,

2004). Although a particular basin receives the same amount of total

precipitation, the distribution of precipitation and the location of the

maximum precipitation nearest to or farthest from the catchment out-

let can result in significantly different hydrographs in terms of the

magnitude and timing of peak flow.

Given the scientific consensus that enhanced greenhouse gas

(GHG) emissions can modulate the intensity and frequency of daily

precipitation (Giorgi, Coppola, & Raffaele, 2014; IPCC, 2013;

Trenberth, Dai, Rasmussen, & Parsons, 2003), it is reasonable to

expect that changes in precipitation characteristics will subsequently

lead to changes in both the mean streamflow and hydrological

extremes (e.g., flood and drought). A significant body of research has

attempted to quantify the effect of precipitation change on regional

hydrology under a changing climate (Chang & Jung, 2010; Coppola,

Raffaele, & Giorgi, 2018; Jung, Bae, & Lee, 2013; Zhang, Karthikeyan,

Bai, & Wang, 2017). When pursuing this subject, it is challenging to

obtain reliable future climate data, particularly at fine spatial and tem-

poral scales. Despite the large uncertainty and scaling gap, future cli-

mate projections generated using global climate models (GCMs) are

the only information that can account for the complex and nonlinear

processes of climate systems in response to enhanced GHG emission

forcings. To alleviate the obvious problems embedded in GCM projec-

tions, downscaling and/or bias correction are generally considered to

be standard procedures, although further levels of uncertainty are

added to climate data (Lee & Bae, 2018). The pros and cons of statis-

tical and dynamical downscaling methods are still a subject of debate,

and a clear conclusion to support the superiority of one method over

the other has not been obtained. Although there are comparative

studies to appeal the scepticism about the computationally expensive

technique of dynamical downscaling using regional climate models

(RCMs; e.g., Ahmed et al., 2013; Ngai, Tangang, & Juneng, 2017), a

number of studies have demonstrated the added values of dynamically

downscaled simulations in capturing detailed climate features in par-

ticular regions (e.g., Lee, Lu, Im, & Bae, 2019; Torma, Giorgi, &

Coppola, 2015; Tselioudis, Douvisa, & Zerefos, 2012). However, when

linking downscaled climate projections to the impact assessment sec-

tor, the usage of statistically postprocessed GCMs tends to be more

dominant than the usage of dynamically downscaled GCMs using

RCMs. For example, many hydrological impact assessments have

applied spatial disaggregation and statistical bias correction to GCM

projections (Eden, Widmann, Maraun, & Vrac, 2014; Shrestha,

Schnorbus, Werner, & Zwiers, 2014). These studies consistently argue

that the incorporation of dynamical downscaling as an intermediate

step may not lead to considerable differences compared with the

results that are obtained by directly applying simple spatial
disaggregation and statistical bias correction to GCMs. If a spatially

disaggregated GCM with bias correction could be an alternative that

is sufficiently substituted for a dynamically downscaled GCM with bias

correction, it would be desirable to increase the number of GCM

ensemble members rather than to perform dynamical downscaling to

improve the reliability of future climate projections. However, the uti-

lization of dynamical downscaling seems to be evaluated in a

fragmented way, with most of the focus on temporally and spatially

averaged patterns. In this regard, this study revisits the question of

whether disaggregated GCM and RCM results show apparent differ-

ences when linking to hydrological simulations.

Arguably, the most important improvement that would be

expected from the utilization of RCMs over GCMs is that RCMs can

better resolve the heterogeneity of complex geographical settings that

mainly determine the region‐specific climatology over a target area.

GCMs typically have a horizontal resolution of more than 100 km

and may have difficulty in accurately parameterizing the fine‐scale

physical processes at regional to local scales (Im & Eltahir, 2018). Pre-

vious studies have consistently shown that this difficulty is particularly

true for climate simulations over the Korean Peninsula, where the

necessity of applying RCMs is highly recognized due to the compli-

cated geographical features of the area (Ahn et al., 2016; Im, Kwon,

Ahn, & Giorgi, 2007; Oh et al., 2016; Suh et al., 2016). For example,

most GCM grid systems fail to capture realistic mountain slopes and

land–sea distributions in Korea, which is directly associated with their

poor performance in simulating mesoscale convective systems and

orographically induced circulations that in turn shape precipitation

patterns. Nevertheless, bias correction using statistical methods (e.g.,

quantile mapping [QM] and linear scaling) seems to rescue GCM pro-

jections, which enables them to feed hydrological models because the

statistical fitting of raw outputs to historical observations can effec-

tively eliminate the systematic bias during the reference period.

Therefore, the performances of bias‐corrected GCMs and bias‐

corrected RCMs appear to be independent of the performance of

the raw output, at least in terms of long‐term averaged climatology

(Lee, Lu, et al., 2019). However, as Lee, Lu, et al. (2019) demonstrated,

the correction factor calculated on a monthly basis may not be effec-

tive in correcting the daily variation of output, especially when the

correction factors are large. More importantly, a large bias correction

factor used to compensate for the poor performance of historical cli-

mate simulations can potentially induce misleading or exaggerated

interpretations of future extremes when the same correction factor

is applied to future climate projections.

In this study, we explore the behaviour of daily precipitation in

terms of spatial variability and its impact on hydrological projections.

Because precipitation is characterized by its highly discrete nature

and distinct variation, state‐of‐the‐art GCMs and RCMs still show a

limited ability to reproduce the detailed characteristics of daily pre-

cipitation. Therefore, it is imperative to understand how the defi-

ciency in simulated precipitation is transferred into hydrological

processes, which will provide insights into the model‐dependent

implications of this common deficiency in hydrological modelling

studies for climate change impact assessment. First, the analysis
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focuses on the comparisons of the spatial variability of daily precipi-

tation derived from two RCMs, which are RegCM4 (Regional Climate

Model Version 4, Giorgi et al., 2012, hereafter referred to as RegCM)

and WRF3.4 (Weather Research and Forecasting Version 3.4,

Skamarock et al., 2008, hereafter referred to as WRF), and their driv-

ing GCM (Hadley Centre Global Environmental Model Version 2‐

Atmosphere–Ocean, Collins et al., 2011, hereafter referred to as

HadGEM). All projections used in this study were generated to estab-

lish Korean national standard climate change scenarios. Both raw

outputs and bias‐corrected outputs using QM from the GCM and

two RCMs are compared to identify whether the GCM and two

RCMs show different performances in simulating the spatial variabil-

ity of daily precipitation and how effectively bias correction improves

the performance of the raw outputs. To quantitatively measure the

ability of climate models to capture the spatial similarity or dissimilar-

ity of daily precipitation as a function of distance, we introduce two

useful statistical methods, namely, the Pearson correlation coefficient

(CC; Berndtsson, 1988) and variogram (Cressie, 1993). With a deeper

understanding of the characteristics of daily precipitation, hydrologi-

cal modelling with SWAT (Soil and Water Assessment Tool, Arnold,

Srinivasan, Muttiah, & Williams, 1998) is then performed over the

Han River basin in Korea using the 12 different climate input

datasets, which include the raw and bias‐corrected GCM and raw

and bias‐corrected two RCMs outputs for the reference and future

periods. The assessment of how differently the GCM and RCM sim-

ulate the spatial variability of daily precipitation with and without sta-

tistical bias correction and the effect on hydrological simulations will

facilitate the proper use of dynamically downscaled climate informa-

tion. These results will directly aid the hydrological modelling com-

munity in employing the climate simulations that are most suitable

for their research.
FIGURE 1 Study area. An elevation map of South Korea derived from a 30
in (a) indicate the grid points of HadGEM around the Korean Peninsula. Th
Korea, and the black triangles in (b) indicate the rain gauges around the Han
the black squares in (b) indicate the locations of the Paldang, Chungju, and
basins
2 | DATA AND METHODOLOGY

2.1 | Study area and observation

Figure 1a shows the elevation map of South Korea derived from a 30‐

m digital elevation model. The geographical features of South Korea

are characterized by a narrow peninsula with complicated mountain-

ous terrain. Within the grid system employed in HadGEM, all of South

Korea and the surrounding ocean are covered by 15 grid points.

Therefore, when HadGEM is simply disaggregated, the climate infor-

mation over South Korea is generated based on these 15 values

regardless of how disaggregated the grids are into a fine mesh. It is dif-

ficult to expect that disaggregated GCM values can represent detailed

characteristics of climatology at regional to local levels.

Hydrological modelling using SWAT is targeted at the Han River

basin, which is located in the central Korean Peninsula covering the

latitudes 36°30′–38°55′ and longitudes 126°24′–129°02′. The Han

River is the second longest river in South Korea and is largely divided

into the South Han River and the North Han River. The convergence

of the South and North Han Rivers forms the inflows to the Paldang

Dam, and the Soyanggang and Chungju multipurpose dams located

in the upstream basin of the Paldang Dam affect the flow regulation

at the inlet of the Paldang Dam, which is a major water source for

the Seoul metropolitan area. To run the spatially semidistributed

hydrological model, that is, SWAT, the Han River basin is subdivided

into 20 midsized basins, as depicted by the grey lines in Figure 1b.

The climate variables from in situ station observations and gridded

simulations are converted to values in each subbasin using the

Thiessen weighting technique to feed SWAT.

To validate the daily precipitation characteristics and calculate the

correction factors applied to the GCM and RCM simulations over
‐m digital elevation model (a) and the Han River basin (b). The red dots
e green triangles in (a) and (b) indicate the weather station of South
River. The blue lines in (b) indicate the tributaries of the Han River, and
Soyanggang Dams. The yellow regions in (b) indicate the Paldang Dam
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South Korea, daily precipitation at 60 in situ observational stations

(Figure 1a) maintained by the Korean Meteorological Administration

are used for the period 1981–2005. Focusing on the Han River basin,

daily precipitation at 52 rain gauges maintained by the Korean Minis-

try of Land, Infrastructure, and Transportation are also used in addi-

tion to 15 in situ station observations. Therefore, precipitation

observations are collected at a total of 67 locations over the Han River

basin (Figure 1b).
2.2 | Climate change projections

The GCM projections are simulated using HadGEM for the historical

(1981–2005) and future (2076–2100) periods. Future projections are

forced by the representative concentration pathway (RCP8.5) that is

equivalent to the business‐as‐usual emission scenario. HadGEM has

a horizontal resolution of 1.75° (longitude) × 1.25° (latitude) and

shows reasonable skill in simulating the present climate over East Asia

including South Korea (Baek et al., 2013). For fine‐scale climate infor-

mation over South Korea, HadGEM projections are dynamically down-

scaled using two different RCMs, namely, RegCM and WRF. The

domain of both RCMs covers Northeast Asian in the centre of the

Korean Peninsula (37.5°N and 127.5°E) with a horizontal resolution

of 12.5 km. More detailed descriptions of RegCM and WRF and their

basic performance can be found in Oh and Suh (2018) and Im, Ahn,

and Jo (2015), respectively. HadGEM projections were generated

within the framework of the Coupled Model Intercomparison Project

phase 5 (CMIP5; Taylor, Stouffer, & Meehl, 2012), and its downscaled

projections focusing on the Korean Peninsula have played an impor-

tant role in assessing future climate change at the national standard

level in South Korea (KMA, 2015).

Because systematic biases are caused by imperfect model dynam-

ics and physics and are inherited from the uncertainties of the initial

and boundary conditions, bias correction is a required step not only

for GCM outputs but also for RCM outputs when they are used to

run hydrological models (Dosio & Paruolo, 2011; Lee, Im, & Bae,

2019; Maurer & Pierce, 2014). There are several bias correction

methods, such as linear scaling, variance scaling, and QM. In this study,

we apply the QM method to remove the systematic biases of the raw

outputs of both the GCM (e.g., HadGEM) and two RCMs (e.g., RegCM

and WRF). Because most existing bias correction methods do not

apply a theoretical adjustment to the spatial variability of daily precip-

itation (Vrac & Friederichs, 2015), the selection of other bias correc-

tion methods should not introduce a significant difference with the

results presented in this study, which is verified by comparing results

with the linear scaling results. Only a marginal difference arises from

applying linear scaling and QM in terms of the spatial variability (not

shown). The QM method fits the cumulative distribution function of

a raw output to the observed cumulative distribution function. The

QM method is widely used for the bias correction of climate model

simulations on a daily scale because this method can adjust not only

the mean and variance of climatology but also the daily distribution

characteristics. In particular, QM method can efficiently alleviate a
well‐known problem of climate models, that is, the excessive occur-

rence of light precipitation using a certain threshold. The threshold,

which corresponds to no precipitation (dry day), is calculated from

the cumulative probability of observed precipitation, and that thresh-

old is then applied to the simulated distribution to determine the prob-

ability of no precipitation. The gamma distribution for precipitation

and the Gaussian distribution for temperature are used to estimate

the probability distribution functions. It is well recognized that the

gamma distribution for precipitation and the Gaussian distribution

for temperature are appropriate distributions for applying QM (Lafon,

Dadson, Buys, & Prudhomme, 2013; Teng et al., 2015; Teutschbein &

Seibert, 2012). Although correction factors are calculated on a

monthly basis, the correction factor in a particular month is uniformly

applied to all daily data within that month. If the simulated quantity

has a larger bias against the observed quantity, the correction factor

becomes larger accordingly. Therefore, although bias‐corrected pat-

terns on a monthly time‐scale derived from historical simulations

appear to perfectly match the observed patterns regardless of the per-

formance of the raw simulations, the magnitudes of the applied cor-

rection factors are different in accordance with the performances of

the raw simulations. Because bias correction is performed under the

assumption of stationarity such that bias patterns do not change with

time, a large bias correction factor due to poor performance in a

present‐day climate simulation may disturb future change signals

when the same factor is applied to future climate projections. The

technical details of the QM method can be found in Lee, Lu, et al.

(2019).

In summary, a total of 12 different climate simulations are used for

the analysis and to drive the hydrological model in this study: raw

HadGEM, RegCM, and WRF outputs for historical and future periods

as well as bias‐corrected HadGEM, RegCM, and WRF outputs for his-

torical and future periods. For simplicity, raw (bias‐corrected) outputs

of HadGEM, RegCM, and WRF are denoted as HAD_RAW

(HAD_QM), REG_RAW (REG_QM), and WRF_RAW (WRF_QM),

respectively.
2.3 | SWAT model

To simulate streamflow in the Han River basin, this study uses a

SWAT model, which is a physically based semidistributed hydrological

model, to consider the spatial complexity of watershed characteristics

as well as climate. This model was developed by the Agricultural

Research Service of the United States Department of Agriculture

and has been widely applied to analyse and assess the climate change

impacts on surface hydrology (Bae, Jung, & Lettenmaier, 2011; Zhou

et al., 2013). In this model, a basin is divided into multiple subbasins,

which are further subdivided into hydrologic response units that con-

sist of homogeneous land use and soil characteristics (Arnold et al.,

1998). Hydrological processes are calculated based on the water bal-

ance equation from each hydrologic response unit in a subbasin. The

flows are summed in a subbasin and are routed through channels to

the basin outlet. Whereas channel routing is simulated using the
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Muskingum method (Cunge, 1969), the potential evapotranspiration is

calculated using the Penman–Monteith method. More detailed

descriptions of the model are given by Arnold et al. (1998).

We set up the SWAT model with 109 midbasins for South Korea,

which is the same as that used in the study by Jung et al. (2013), but this

study focuses on only the Han River basin (20 midbasins in Figure 1b).

To run the SWAT model, daily meteorological variables, such as precip-

itation, maximum and minimum temperature, solar radiation, relative

humidity, and wind speed, are required as input data. We collect the

meteorological data (including daily precipitation) at 15 in situ stations

and additional daily precipitation data at 52 rain gauges. All of the data

are then interpolated by the Thiessen weighing technique to the 20

midbasins. The basin characteristics are represented using geographic

information system (GIS) digital databases that include a 30‐m digital

elevation model, soils, vegetation types, river networks, and land cover,

which are provided by the water management information system of

Korea. To calibrate the hydrological model parameters, reliable long‐

term natural flow data are required. Although there are many

streamflow gauging stations in the river basins of South Korea, they

are significantly influenced by upstreamdamoperation. Therefore, Jung

et al. (2013) used the regionalizationmethod inwhich themodel param-

eters of ungauged basins are regionalized from the calibrated parame-

ters of the gauged basins. For the regionalization, the parameters of
FIGURE 2 Time series of streamflows (2001–2005) in three dam basins:
lines represent the streamflows estimated by the hydrological model (SWA
the SWAT model were calibrated at six multipurpose dam sites and

the 109 midbasins were categorized into one of six groups, which are

the six dam basins based on geophysical characteristics: catchment

area, mean altitude, mean slope, ratio of forest, water content at satura-

tion, field capacity, and wilting point of soil. The six different parameter

setswere applied to the six basin groups. To validate the performance of

SWAT in simulating streamflow, the experiment feeding the observed

meteorological data is performed prior to the experiments feeding the

model‐based simulation data. This experiment enables comparisons of

the simulated streamflow with the measured dam inflow. Figure 2 pre-

sents the simulated streamflows and measured dam inflow at the inlets

to the Chungju, Soyanggang, and Paldang Dams for the period 2001–

2005. In general, the simulated flows are in qualitatively and quantita-

tively good agreement with the measured dam inflows and capture

the phase and magnitude in low and high flows. Although there are

some discrepancies in the period with low flows, this error may partly

be due to measurement uncertainty and dam operation. Because the

dam inflow is indirectly measured by the changes in water level of the

dams, the accuracy during low flows is rather limited when the change

in water level is not large enough, which is partly responsible for the

very large fluctuations in the measured low flows at the Chungju and

SoyanggangDams.Moreover, themeasured dam inflows at the Paldang

Dam are systematically higher than the simulated flows during the low
Chungju Dam (a), Soyanggang Dam (b), and Paldang Dam (c). The solid
T), and the grey dots indicate the measured dam inflow
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flow period because the flows at the Paldang Dam are artificially main-

tained to prevent a base streamflow from lowering below approxi-

mately 100 m3/s, with the aid of the dam operation at the Chungju

and Soyanggang Dams, which are the uppermost dams in the South

Han River and North Han River, respectively. Therefore, it is regarded

that the performance of SWAT is reasonable for analysing the hydrolog-

ical response (e.g., streamflow) to meteorological conditions (e.g., pre-

cipitation) over our target region.

2.4 | CC and variogram

The Pearson CC and variogram are used to quantitatively assess the

spatial variability of precipitation. The CC is a measure of linear depen-

dency between a pair of random variables, and it has been widely used

to characterize the complex spatial structure of precipitation patterns

(Berndtsson, 1988; Habib, Krajewski, & Ciach, 2001). This study

applies the CC to analyse the linear dependency of interstations. The

CC (r(X,Y)) can be estimated by Equation (1) and derived from N sta-

tion pairs (X,Y):

r X; Yð Þ ¼ XY − XYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − X

2
� �

Y2 − Y
2

� �r
;

(1)

where the overbars indicate average values over the sample of size N.

In addition to CC, we also use a variogram to estimate the temporal

coherence of daily precipitation between station pairs as a function of

distance between them (Baigorria, Jones, & O'Brien, 2007; Ly, Charles,

& Degre, 2011; van de Beek, Leijnse, Torfs, & Uijlenhoet, 2011). In gen-

eral, the variance of the differences between the values at two locations

is calculated as a function of both the direction and distance. However,

the assumption that the variable is isotropic enables the variogram to be

calculated only as a function of the distance (Xu et al., 2016). In this

study, we assume that daily precipitation is isotropic and stationary

(Cressie, 1993; van de Beek et al., 2011), and accordingly, the empirical

variogram (bγ hð Þ) is calculated as half of the variance between paired

values (Z(si),Z(si+h)) at distance h as follows:

bγ hð Þ ¼ 1
2N hð Þ∑

N hð Þ
i¼1 Z sið Þ−Z si þ hð Þð Þ2; (2)

where N(h) is the number of pairs of data points at distance h apart.

An appropriate theoretical model is then fitted to the empirical

variogram, and the three measures (e.g., nugget, sill, and range) that

characterize the empirical variogram are determined by weighted least

squares between two distributions (Cressie, 1985; see Figure 5). The

spherical model (γ(h)), which is widely used to approximate empirical

variograms (Merino, Jones, Stooksbury, & Hubbard, 2001; van de

Beek et al., 2011), is fitted to the empirical variogram calculated using

daily precipitation in this study.

γ hð Þ ¼ C0 þ C1
3
2
h
C2

−
1
2

h
C2

� �3
 !

; if h ≤ C2

C0 þ C1 ; if h > C2

8><>: : (3)
Here, C0 is the nugget (the variogram at zero distance), C1 is the sill

(the maximum value of the fitted theoretical variogram model) and C2

is the range (distance at which data pairs are completely decorrelated).

Because of its small value, the nugget was assumed to be negligible in

this study. The variance of paired data (e.g., daily precipitation at two

locations in this study) increases gradually until it reaches its maximum

at a certain distance between two locations whose variables are no

longer spatially correlated. The maximum variance is the sill, and the

corresponding distance is the range. Because the magnitude of the

variance is roughly proportional to the squared precipitation intensity,

the large sill values are indicative of intense precipitation events.

Moreover, the range decreases as the spatial variability of precipita-

tion becomes larger.
3 | RESULTS

3.1 | Spatial variability of daily precipitation

We begin our analysis by comparing the precipitation derived from

different climate models in terms of their performance in simulating

the spatial variability over South Korea using 60 in situ stations

(Figure 1a); then we focus on the detailed characteristics of the Han

River basin. Figure 3 presents the spatial distribution of the CCs calcu-

lated using daily precipitation data between the Seoul station and the

remaining 59 stations. This provides an illustrative example of how the

spatial similarities in terms of temporal coherence between two sta-

tions vary according to distance. For the observations, the CC

decreases as the distance from the Seoul station increases. Majority

of the stations located in the southern part of coastal region appear

to be marginally related to the precipitation temporal evolution at

the Seoul station. Similar to the observed pattern, all model simula-

tions show a gradual decrease in the CCs with the distance. However,

they behave differently in terms of the gradient in the decrease in the

CCs. HAD_RAW shows consistently higher CCs than REG_RAW and

WRF_RAW. Therefore, HAD_RAW still retains CC of at least 0.7 (yel-

low colour) around 36°N, which is more than 100 km from Seoul sta-

tion. The critical deficiency of HAD_RAW can be found on the

comparison between the Inje and Sokcho stations. The actual distance

between the Inje and Sokcho stations is not that far; however, the pre-

cipitation pattern between them is quite different due to the effect of

the geographical settings. The main ridge of the Taebaek Mountains

stretching from north to south along the eastern coastal region lies

between the Inje and Sokcho stations. As a result, Sokcho is located

in the plain coastal region, whereas Inje is located further into the

inland mountainous region (see Figure 1a). Because the representation

of geographical settings largely depends on the model resolution,

HAD_RAW, which has a coarse grid, is not able to accurately resolve

the complex geography (e.g., topography and land–sea contrast),

which may be the main reason for the failure to capture the region‐

specific characteristics of the observed pattern. More specifically, only

HAD_RAW shows higher CCs of both the Sokcho (CC = 0.87) and Inje

(CC = 0.94) stations than the observations and two downscaled



FIGURE 3 Spatial distributions of the temporal correlation coefficient for daily precipitation between the Seoul station and the other stations
derived from the observations (a); raw outputs of HAD_RAW (b), REG_RAW (c), and WRF_RAW (d); and the bias‐corrected outputs of
HAD_QM (e), REG_QM (f), and WRF_QM (g). The point with the black line represents the Seoul station, and the two points with the grey line
represent the Inje (inland) and Sokcho (coastal) stations
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results. This result implies that HAD_RAW tends to produce precipita-

tion at both Sokcho and Inje stations, which are highly correlated with

that at the Seoul station. In contrast, REG_RAW and WRF_RAW pro-

duce much lower CCs in Sokcho than in Inje, which is closer to the

observed pattern. However, whether this deficiency in the raw output

can be improved using bias correction remains to be determined.

Because climate model simulations are not completely accurate, the

statistical bias‐correction method is widely applied. In this study, we

apply QM to the raw GCM (e.g., HAD_RAW) and raw RCMs

(REG_RAW and WRF_RAW) to investigate the impact of bias correc-

tion on the spatial variability of precipitation. A comparison of the

results with and without bias correction indicates that bias correction

does not lead to any notable changes.

The aforementioned are more clearly revealed in Figure 4, which

presents a scatterplot of the CCs of daily precipitation versus distance

for all pairwise combinations of the 60 stations. The total number of

combinations is 1,770 pairs. Consistent with the spatial pattern of

the CCs in Figure 3, the spatial dependence of the observed daily pre-

cipitation decreases sharply with increasing distance, especially at a

distance of less than 100 km. Focusing on this relatively short distance

between paired data (e.g., less than 100 km), the well‐defined pattern

that differentiates the downscaled RCM results from the driving GCM

can be found. The most notable difference appears in the decreasing

gradient in the CCs. HAD_RAW retains CCs exceeding 0.8 of CCs until

a distance of 100 km, which is not surprising considering the horizon-

tal resolution employed in HAD_RAW. In contrast, REG_RAW and

WRF_RAW are able to capture major characteristics of the decreasing
in the CCs, which are similar to the observations, thus indicating the

potential for improvements in simulating localized precipitation pat-

terns. A narrow CC spread is another weakness of the HAD_RAW

simulation. In the observations, the CCs show a large scatter ranging

from 0.8 to 0.3 at a distance of 100 km, which indicates that the

nature of precipitation over Korea is not simple or monotonic. Instead,

the precipitation over South Korea is characterized by distinct sea-

sonal and regional variability governed by different mechanisms (Im,

In, & Han, 2013), which induce localized and synoptic‐scale precipita-

tion patterns on a case‐by‐case basis. By comparing the CC distribu-

tion that measures the relationship between precipitation and

distance, both REG_RAW and WRF_RAW consistently show better

agreement with the observed pattern than HAD_RAW. An important

aspect for bias correction can be derived from the comparison of

raw simulations and bias‐corrected simulations. Identifying the rele-

vant difference from simulations with and without bias correction is

difficult. QM does not appear to be able to modulate the relationship

in daily precipitation across stations. Although the statistical bias cor-

rection method (e.g., QM) can improve the climatological mean precip-

itation at individual locations (Lee, Lu, et al., 2019), it may not

effectively adjust the occurrence of precipitation and the interstation

relationship. This drawback will be further discussed in the next

section.

On the basis of the different model performances in capturing the

spatial variability of daily precipitation measured by the CCs for all

pairwise combinations at the 60 stations over South Korea, we narrow

the analysis to the Han River basin, where the hydrological simulation



FIGURE 4 Scatterplot of the correlation coefficients for daily precipitation versus their interstation distances (60 stations, 1981–2005) derived
from the observations (a); raw outputs of HAD_RAW (b), REG_RAW (c), and WRF_RAW (d); and the bias‐corrected outputs of HAD_QM (e),
REG_QM (f), and WRF_QM (g)
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using the SWAT model is targeted. Figure 5 shows the empirical vari-

ance against distance and sill and range values determined by the

weighted least squares method using the spherical variogram, which

is calculated using the daily observed precipitation at 67 stations that

are densely located in the Han River basin (see Figure 1b: weather sta-

tions plus rain gauges). We select four specific days that have dis-

tinctly different characteristics of precipitation in terms of the spatial

distributions and amounts as presented in Figure 5. For example, the

first case (1981.09.24) represents a high spatial variability of precipita-

tion because the region with nonprecipitation and the region with

high‐intensity precipitation (e.g., more than 100 mm/day) are contigu-

ous. In contrast, the fourth one (1981.07.01) represents a spatially less

variable case because the Han River basin is mostly covered by

intense precipitation. Such behaviours are well reflected in the slope

of the variogram curve, which indicates that a steeper change rate of

precipitation versus increment of distance leads to a shorter distance

to reach the range value. More specifically, the range values for four

cases are approximately 19, 46, 154, and 171 km. Because the range

measures the distance at which two stations are unrelated, the range

value decreases as the spatial variability increases. Moreover, the sill

value is tied to the precipitation intensity because it refers to the var-

iance corresponding to the distance of range. Because the variance is

based on the squared quantity, the range varies substantially with the

difference in the amount of precipitation between locations. For

example, the first and fourth cases show larger sill values (i.e., 1,211

and 4,181 mm2) because regions with very intense precipitation may

lead to larger differences than regions with less precipitation, whereas
the third case shows the smallest sill (i.e., 51 mm2) because the maxi-

mum precipitation is less than 30 mm/day.

As indicated by the observed pattern in Figure 5, the range and sill

values can be used as good descriptive statistics that describe the pre-

cipitation characteristics in a quantitative manner. Figures 6 and 7

present the frequency histograms of the range and sill attained from

the variogram of daily precipitation over the Han River basin from

the observations and six different model simulations. Among a total

of 9,131 days (365 days × 25 years +6 days) during the 25‐year histor-

ical period, the cases are included in the calculation of frequency when

at least one subbasin has a daily precipitation amount greater than

1 mm. First, the entire frequency distribution of the range (Figure 6)

from the observed daily precipitation provides the general precipita-

tion spatial structures. Dominant precipitation patterns occupying

more than 70% of the total precipitation over the Han River basin

are characterized by large range values of more than 150 km, which

correspond to the third and fourth cases in Figure 5c,d. This finding

supports the notion that most precipitation events occur in broad

regions, maintaining similarity across neighbouring basins. However,

the less frequent precipitation cases with relatively smaller range

values still account for a sizeable portion (approximately 20% for less

than 100 km); thus, they should not be considered unimportant or

trivial. Because we focus primarily on the cases representing high spa-

tial variability over a short distance, the frequency distribution for the

range value up to 110 km is enlarged and compared with the model

simulations. In general, all simulations systematically underestimate

the frequency of precipitation at small range values, particularly values



FIGURE 5 Examples of fitted variograms and spatial distribution of daily precipitation for four specific days with different ranges. The blue line is
the fitted variogram, and the dotted red line represents the estimated sill and range. The Thiessen polygon method is used to interpolate the
precipitation data from 67 stations
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FIGURE 6 Histogram of the range (km) for daily precipitation over the historical period derived from observations (a); raw outputs of HAD_RAW
(b), REG_RAW (c), and WRF_RAW (d); and bias‐corrected outputs of HAD_QM (e), REG_QM (f), and WRF_QM (g). (a) shows the frequencies of all
ranges (0–210 km), whereas the other figures show the frequencies within 100 km to clearly assess low range values

FIGURE 7 Histogram of sill (mm2) for the daily precipitation over the historical period derived from observations (a); raw outputs of HAD_RAW
(b), REG_RAW (c), and WRF_RAW (d); and bias‐corrected outputs of HAD_QM (e), REG_QM (f), and WRF_QM (g)
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less than 30 km. Whereas 14% of the observed daily precipitation

amounts consist of the range values of 0–30 km, the precipitation

amounts from HAD_RAW, REG_RAW, and WRF_RAW indicate a

much lower portion in the same range, that is, 0.3%, 1.5%, and 2.3%,

respectively. This deficiency in the raw output appears to be not sig-

nificantly improved by applying the bias correction, which is consistent
with the results of Figure 4. Although slight increases in the frequency

are found for the range values of 0–30 km, they are very marginal

improvements (i.e., 0.3% ➔ 0.8%, 1.5% ➔ 2.4%, and 2.3% ➔ 2.5%).

The statistical bias correction using QM may not improve the model's

original performance in capturing the proper coverage of localized pre-

cipitation that can critically affect the range.
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Regarding the frequency distribution of the sill (Figure 7), the

observed precipitation occurs most frequently in the range of 10 to

100 mm2, which indicates relatively weak precipitation corresponding

to the third case in Figure 5. A sill value of 1,000 mm2 is roughly

equivalent to the 45‐mm difference in precipitation between station

pairs, and this case means that a station receives at least 45 mm/day

of precipitation when the paired station has no precipitation. The fre-

quency of sill values greater than 1,000 mm2 accounts for 8.7%, which

includes the first and fourth cases in Figure 5. By comparison, notable

differences are found in model performance between the RCMs (i.e.,

REG_RAW and WRF_RAW) and driving GCM (i.e., HAD_RAW). The

REG_RAW and WRF_RAW reasonably simulate the sill characteristics

for the relative ratios of the frequency by capturing not only the peak

(between 10 and 100 mm2) but also the upper and lower tails. In con-

trast, the frequency distribution from HAD_RAW is completely differ-

ent from the observed one. Approximately 90% of the precipitation

occurs for sill values less than 100 mm2, which leads to a skewed dis-

tribution. In particular, very small sill values are unrealistically domi-

nant, and the most frequent sill appears in the range of 1 to

10 mm2. In addition, HAD_RAW shows a very low frequency of sill

values over 1,000 mm2. All of these limitations stem from the inability

of HAD_RAW to capture intense precipitation. However, unlike the

range, the bias correction leads to a significant improvement in the

distribution of the sill. Compared with the different performances of

the raw output, the broad pattern in the distribution of HAD_QM

appears to be comparable with those from REG_QM and WRF_QM,

which implies that QM results in a greater adjustment of the precipita-

tion amount in HAD_QM than in REG_QM and WRF_QM. This result

is quite different from that seen in the analysis of the range (Figure 6).

Therefore, our study suggests that bias correction using QM presents

different levels of effectiveness in adjusting the range and sill. Under-

standing the physical meaning of bias correction behind a large modi-

fication of precipitation amount and a slight modification in the spatial

variability is essential for interpreting the hydrological response to dif-

ferent climate inputs (see Section 3.2).
3.2 | Impact of the spatial variability in precipitation
on the hydrological simulations

In this section, hydrological simulations are mainly analysed to exam-

ine how the different performances of simulated precipitation can

affect hydrological processes and how a large reduction in the bias

for the present climate can affect future projections when assuming

the existence of the same bias in the future. To accomplish these

goals, the SWAT hydrological model is used with the 12 different cli-

mate input dataset, which are the raw and bias‐corrected GCM (i.e.,

HAD_RAW and HAD_QM) and the raw and bias‐corrected RCMs

(i.e., REG_RAW, WRF_RAW, REG_QM, and WRF_QM) for the refer-

ence (1981–2005) and future (2076–2100) periods. We also perform

SWAT simulations fed by observed meteorological data for the same

period of the reference simulation. Note that because the reference

simulation is not a reproduction experiment but a scenario experiment
forced by historical GHG emissions, the SWAT simulation fed with the

reference simulation cannot be compared with the SWAT simulation

fed with observations based on a particular day and year. However,

the SWAT simulation fed with observations can provide exemplary

behaviour that helps identify limitations or problems arising from dif-

ferent climate input performances.

Figure 8 presents the annual maximum daily streamflow (AMDS) at

the inlet of the Paldang Dam driven by observations, raw outputs, and

bias‐corrected outputs for the reference period. In this section, we

avoid the analysis based on the long‐term averaged climatology

because the effect of spatial variability in precipitation on the hydro-

logical simulation may be obscured. For the AMDS at the Paldang

Dam simulated by SWAT with observations, a strong interannual var-

iability is found. A majority of the year shows AMDS values in the

range of 6,000–12,000 m3/s, whereas for an abnormal year, the high

and low flows reach approximately 29,000 m3/s and 2,950 m3/s,

respectively. The AMDSs driven by HAD_RAW, REG_RAW, and

WRF_RAW all severely underestimate the interannual variability

because they fail to capture abnormally high peak flows, even though

they show reasonable performance for low peak flow and 25‐year

average AMDS (OBS = 12,760 m3/s, HAD_RAW = 9,870 m3/s,

REG_RAW = 10,910 m3/s, and WRF_RAW = 11,500 m3/s). Interest-

ingly, the AMDS driven by the bias‐corrected precipitation shows a

very different response between the RCMs and the driving GCM.

The AMDS driven by HAD_QM exceeds 30,000 m3/s three times,

although this value has never been observed for AMDS driven by

measured dam inflow, and the maximum is 36,120 m3/s. Unrealisti-

cally high AMDS values tend to occur with an additional problem in

which lower AMDSs are increased to much higher values; otherwise,

an appropriate range of lower AMDSs driven by HAD_RAW is

observed. However, the dramatic change obtained with HAD_QM‐

led AMDS is not found in the AMDS driven by REG_QM and

WRF_QM. For the AMDS patterns from the RCMs, bias‐corrected

precipitation may play a role in enhancing the AMDS for the abnor-

mally high peak year, although the general phase of the annual AMDS

fluctuations and the range of lower AMDS values are preserved.

To reveal the key factor underlying the different impacts of bias‐

corrected precipitation on streamflow simulations driven by RCMs

and GCM, we compare the spatial distribution of runoff driven by

raw and bias‐corrected precipitation from August 24 to 26, 1989

(Figure 9). This period is targeted because the AMDS driven HAD_QM

produces an extremely high value for August 26, 1989 (see Figure 8b).

The runoff averaged over the Han River basin driven by HAD_RAW is

not substantially different from those of REG_RAW and WRF_RAW,

although they show quite different spatial variability and 3‐day evolu-

tionary patterns of runoff. The differences in the runoff spatial and

temporal patterns are much more amplified when fed by bias‐

corrected precipitation, which in turn leads to dramatic differences

in streamflow. More specifically, runoffs driven by HAD_QM and

REG_QM largely increase compared with those from HAD_RAW and

REG_RAW, and their basin‐averaged values are 248 and 236 mm,

respectively, during August 25 and 26. Despite the qualitatively similar

amount of runoff, the streamflow has a large difference of



FIGURE 9 Spatial distribution of runoff obtained from the raw outputs (HAD_RAW, REG_RAW, and WRF_RAW) and the bias‐corrected outputs
(HAD_QM, REG_QM, and WRF_QM) in the Han River basin from August 24 to 26, 1989

FIGURE 8 Annual maximum daily streamflow at outlets of the Paldang Dam driven by observation (a), raw outputs, and bias corrected outputs.
Black and red lines indicate AMDSs derived from the raw outputs and the bias‐corrected outputs, respectively. The dashed line represents the
average value for each case
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approximately 6,000 m3/s between HAD_QM and REG_QM for

August 26. The key determinant behind the marked difference in the

streamflow pattern is the spatial variability of runoff. Whereas

REG_QM exhibits locally intensified runoff that is restricted with a

certain area, HAD_QM produces intensified runoff with a large cover-

age due to the lack of spatial variability. Therefore, the convergence

caused by strong runoff encompassing the large faction of the basin

immediately renders the peak flows at the inlet of the Paldang Dam.

To demonstrate whether the runoff pattern driven by RCM‐based

precipitation is more realistic than that driven by the GCM, we analyse

the spatial distribution of runoff simulated by the observed meteoro-

logical data for three events (Figure 10). September 2, 1984; Septem-

ber 11, 1990; and August 7, 2002, are selected for the high

streamflow occurrence, and 2 days before peak date are also included

in the analysis (Figure 10). Although a direct comparison between this

and the result in Figure 9 is not permitted, this analysis can serve as a

proxy for understanding the typical behaviour of observed runoff. All

three cases are characterized by distinct spatial and temporal variabil-

ity. The region with maximum runoff varies at the daily timescale

according to the evolution of precipitation, and the spatial patterns

resemble a collection of small patches. These behaviours in runoff

are much closer to those driven by RCM‐based precipitation seen in

Figure 9.
FIGURE 10 Spatial distribution of runoff simulated using observed clima
Problems with the runoff pattern that directly respond to precipi-

tation will affect the streamflow. Because the same bias correction

factors derived from the reference simulations are applied to the

future projections, it is important to compare the precipitation and

resultant streamflow from the raw and bias‐corrected output for the

future period. Figure 11 presents the daily streamflow hydrograph

and precipitation for September 2085 because this month includes

one of the highest streamflow events, which occurs on September

10, for all hydrological simulations driven by HAD_QM, REG_QM,

and WRF_QM. To obtain a better understanding of the effect on the

dispersion and basin lag when forming the peak flow, we investigate

the streamflow and precipitation averaged over the Paldang Dam

basin as well as the Soyanggang Dam and Chungju Dam basins, which

are located in the upstream basin of the Paldang Dam (see Figure 1 for

their locations). Regardless of the basins, the most distinct pattern

appearing in the bias‐corrected GCM is a significant increase in precip-

itation and resultant streamflow compared with the raw output. The

precipitation amounts averaged over the Paldang Dam basin from

HAD_RAW and HAD_QM are 302 and 689 mm from September 7

to 12. The corrected precipitation rate is 2.3 times higher, and this

provides a peak flow that is roughly 3.0 times higher, resulting in unre-

alistic streamflow of 38,770 m3/s from HAD_QM. However, the

corrected rates of precipitation from REG_QM and WRF_QM are
te data in the Han River basin for three events with high streamflows



FIGURE 11 Time series of daily streamflow at the inlets of the Paldang Dam, Chungju Dam, and Soyanggang Dam and the mean areal daily
precipitation at the Paldang Dam, Chungju Dam, and Soyanggang Dam basins from September 1 to 30, 2085. Blue and black lines indicate
streamflow derived from the raw outputs and the bias‐corrected outputs, respectively. Blue and black bars indicate the mean areal precipitation
derived from the raw outputs and the bias‐corrected outputs, respectively
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approximately 1.6 and 1.2 times, which subsequently leads to

increases in the peak flow of approximately 1.4 and 1.1 times, respec-

tively. Therefore, the peak flows driven by the bias‐corrected output

are completely different among HAD_QM (38,770 m3/s), REG_QM

(20,840 m3/s), and WRF_QM (19,060 m3/s), although HAD_RAW,

REG_RAW, and WRF_RAW produce similar values.

The distinctly different responses between the bias‐corrected

GCM and bias‐corrected RCMs can be partly explained by Figure 12

, which shows the spatial distribution of runoff from September 8

to 11, 2085. The spatial distribution of runoff driven by HAD_RAW

is quite different from that of REG_RAW and WRF_RAW. Whereas

the spatial variability of runoff driven by RCM‐based precipitation pri-

marily comprises both very low and very high values, the runoff

driven by HAD_RAW shows a different behaviour exhibiting similar

values across most of the basin. The highest runoff driven by
HAD_RAW occurs near the Paldang Dam, and the runoff amount

decreases slowly in the upper basins. In contrast, the RCM‐based run-

off is highest in the Chungju and Soyanggang basins, which is because

the precipitation from HAD_RAW is affected by one GCM grid point,

which is near the Paldang Dam (see GCM grid points in Figure 1),

whereas the RCM‐based precipitation is generated by considering

the spatial variations of detailed topographical and meteorological

characteristics such as mountainous effect and wind fields. After the

bias correction, the characteristics of the spatial variability do not

change significantly, although a large increase in runoff is found in

all simulations. Because HAD_RAW fails to capture the spatially dis-

tinct pattern of runoff, the increase in precipitation in HAD_QM does

not occur locally. Consequently, the streamflow feeding HAD_QM

results in unrealistically high flows that are converged by broadly

intensified runoff.



FIGURE 12 Spatial distribution of runoff obtained by the raw outputs (HAD_RAW, REG_RAW, and WRF_RAW) and the bias‐corrected outputs
(HAD_QM, REG_QM, and WRF_QM) in the Han River basin from September 8 to 11, 2085
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4 | SUMMARY AND CONCLUSIONS

The spatial variability of precipitation is a critical factor for simulating

streamflow. It is generally regarded that RCMs exhibit relatively better

performance than GCMs in terms of capturing the spatial variability of

precipitation because the horizontal resolution of RCMs is much

higher than that of GCM. Nevertheless, the effectiveness of dynamical

downscaling using RCMs is still a subject of controversy when linking

climate simulations with hydrological models.

In this study, we investigate the added value of dynamic downscal-

ing on hydrological projections in terms of the spatial variability of pre-

cipitation. To set up the input data for a semidistributed hydrological

model (SWAT), the GCM projection (HadGEM) is downscaled by either

a simple disaggregation or two RCMs (RegCM andWRF), and statistical

bias correction using the QMmethod is then applied to the daily output

derived from the GCM and two RCMs. The comparative analysis of pre-

cipitation characteristics from the raw and bias‐corrected output clearly

reveals the limitation and effectiveness of statistical bias correction.

Our study suggests that bias correction using QM presents different

levels of performance in improving the precipitation intensity and its

spatial variability, which leads to a quite different hydrological behav-

iour in response to GCM‐ and RCM‐based precipitation. The spatial var-

iability of daily precipitation does not change significantly after applying

bias correction, emphasizing the importance of the performance of the

raw output. By comparing with the precipitation from GCM, the statis-

tics derived from RCM‐based precipitation are much closer to those of

the observations, in which the spatial autocorrelation is sharply
decreased within a relatively short distance. In contrast to spatial vari-

ability, a significant reduction in the bias related to the precipitation

intensity is commonly found in both the GCM and RCMs simulations

when applying bias correction. However, the large bias correction factor

that is required to compensate for the large discrepancy in the reference

simulation against the observationsmay cause a serious distortion in the

raw output, particularly when the raw output is too coarse to represent

the local variability. Such a problem tends to be amplified in the future

projection. For example, if the severely underestimated precipitation

from GCM raw output is intensified several times through the bias cor-

rection without considering the localized spatial variability, the future

precipitation is largely intensified by the same correction factor across

the entire basin, which in turn exaggerates the runoff. The deficiency

seen in the precipitation and runoff spatial patterns is directly trans-

ferred to the shape of the streamflow hydrographs, leading to unrealis-

tically high flows. However, the RCM‐based streamflows show

reasonable performance in both qualitative (e.g., spatial distribution)

and quantitative (e.g., peak flow magnitude) aspects. Furthermore, the

discrepancy in the peak flows driven by the raw and bias‐corrected pre-

cipitation is much smaller in the RCMs than in the GCM, which is impor-

tant to enhance the reliability of hydrological extremes in the context of

future projection.
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